Simulation of the Propagation of Tsunamis in Coastal Regions by a Two-Dimensional Non-Hydrostatic Shallow Water Solver

ثبت نشده
چکیده

During the last years, great effort has been addressed by several authors to simulate the propagation of solitary waves/ tsunamis, tides or surges, due to the tremendous damages and losses of human lives in the inundated rural and residential areas. Tsunamis are sea waves usually generated by undersea landslides and earthquakes. They can be regarded as long/solitary waves with small amplitude and long wavelength, travelling with high speed over long distances. Approaching the coast, their amplitude increases, becoming potentially destructive. The propagation of tsunami in coastal regions can be studied by investigating the shoaling and breaking of solitary waves over inclined bottoms [1]. Chanson [2] asserted that the front of tsunamis over dry plains becomes a shock wave, and presented a similarity between the propagation of the tsunamis over dry coastal areas and the classical dam-break problems. Generally, 3D simulations of the processes described as above, e.g., by RANS models [3], or Smoothed Particle Hydrodynamics methods [4], or Volume of Fluids methods [5], require very high computational costs. For these reasons, a significant amount of literature based on depthintegrated equations has been published for simulations of long waves/tsunamis propagation. Generally, the two modeling approaches proposed in literature are the Boussinesq-Type Models (BTMs) and the Non-Hydrostatic Nonlinear Shallow Water Equations (NLSWEs) models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parallel non-hydrostatic shallow water model on adaptive triangular meshes in $sam(oa)$^2

Even with current extreme scale systems, the accurate simulation of tsunamis continues to be a challenging problem. One commonly used model for this task are the hydrostatic shallow water equations which, however, are not able to represent all relevant physical effects of tsunamis. In this paper, we therefore show how to solve the non-hydrostatic shallow water equations in parallel within the p...

متن کامل

A Non-Hydrostatic Shallow Water Model on Triangular Meshes in Sam(oa) Guided Research Project

For the simulation of tsunamis, the hydrostatic shallow water equations have established as a sound mathematical basis. However, due to the hydrostatic assumption, not all relevant physical effects—especially in coastal areas—can be modelled accurately. In this paper, we therefore show how to extend the PDE-framemwork sam(oa)2 towards modified non-hydrostatic shallow water equations. We use the...

متن کامل

Dispersive and Nonhydrostatic Pressure Effects at the Front of Surge

Undular bores and shocks generated by dam-break flows or tsunamis are examined considering nonhydrostatic pressure and dispersive effects in oneand two-horizontal-dimensional space. The fully nonlinear Boussinesq-type equations based on a weakly nonhydrostatic pressure assumption are chosen as the governing equations. The equation set is solved by a fourth-order accurate finite-volume method wi...

متن کامل

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017